Руководство по эксплуатации АГАВА ПЛК-30

АГСФ.421445.003РЭ Редакция: 1.4 Дата: 03-03-2025

Содержание
Назначение
<u>Технические характеристики и условия эксплуатации</u>
<u>Устройство и принцип работы прибора</u> <u>Разъем X1 (RS485-1, RS485-2), назначение контактов</u>
<u>Разъем X2 (RS485-3, RS485-4), назначение контактов</u>
<u>Разъем X4 (датчик сети), назначение контактов</u>
<u>Разъем Х5 (питание), назначение контактов</u>
<u>Разъем X7 (экран Ethernet), назначение контактов</u>
Терминальные джамперы, назначение
Программная часть
<u>Подготовка прибора к использованию</u>
Общие указания
Указания мер безопасности
<u>Монтаж и подключение прибора</u>
<u>Электромагнитные помехи и методы их подавления</u>
Настройка прибора
<u>Работа прибора с CODESYS V3.5</u>
<u>Обновление базовых программных компонентов ПЛК</u>
Обновление компонентов загрузчика
<u>Обновление компонентов ОС Linux</u>
Обновление корневой файловой системы
<u>Техническое обслуживание</u>
<u>Правила транспортирования и хранения</u>
<u>Комплектность</u>
Гарантийные обязательства

1 Назначение

Программируемый логический контроллер АГАВА ПЛК-30 предназначен для создания систем автоматизированного управления технологическим оборудованием в различных областях промышленности, жилищно-коммунального и сельского хозяйства.

Логика работы ПЛК определяется потребителем в процессе программирования контроллера. Программирование осуществляется с помощью среды разработки проекта CODESYS v3.5 SP10+.

Проекты могут быть разработаны с использованием любого из языков стандарта IEC 61131-3: SFC: Sequential Function Chart (или Grafcet), FBD: Function Block Diagram, LD: Ladder Diagram, ST: Structured Text и IL: Instruction List, а также языка CFC: Continuous Function Chart.

Загрузка проекта в прибор и его отладка производятся через интерфейс Ethernet.

Прибор оснащен жидкокристаллическим графическим индикатором, клавиатурой, одним (АГАВА ПЛК-30) или двумя (АГАВА ПЛК-30.1 и АГАВА ПЛК-30.2) портами Ethernet, четырьмя RS-485 портами, RS-232 портом, USB-host и USB-OTG портами, слотом для SD-карты, датчиком наличия питающей сети.

Наличие графического индикатора позволяет разработчику проекта выводить на него различную информацию о состоянии объекта, прибора и т. п. Кроме того, из проекта можно управлять цветами подсветки индикатора.

Наличие клавиатуры позволяет вводить в контроллер различные данные и управлять объектом по месту.

Встроенный пьезоэлектрический зуммер может быть использован в качестве звуковой сигнализации.

На лицевой панели прибора присутствуют светодиоды «Работа», «Авария» и «Программа», управление которыми доступно из программы проекта.

Четыре гальванически изолированных порта RS-485 позволяют осуществлять высокоскоростной обмен с внешними устройствами ввода-вывода по стандартному протоколу MODBUS-RTU. Порт RS-232 обеспечивает связь с другими устройствами (ИБП и т. п.).

В ПЛК может быть установлена SD-карта объемом до 2 Тб, которая используется прибором в качестве накопителя, что позволяет сохранять большой объем информации.

Наличие порта USB-host позволяет подключать к прибору USB-flash-накопители и другие USB-устройства. Порт USB-OTG может выступать в роли USB-host или USB-device и позволяет подключать прибор к компьютеру для съема информации с внутренней SD-карты без ее извлечения.

Применение ОС реального времени Linux RT в ПЛК позволяет использовать в проектах ее ресурсы, такие как хранение и накопление данных в файлах, их перенос на внешний съемный USB-flash-диск, либо по сети Ethernet. Многозадачность ОС позволяет создавать проекты, работающие параллельно с назначением различных приоритетов.

Наличие сетевых ресурсов позволяет производить обмен информацией по локальной сети или через Интернет. Код проекта сохраняется на внутренней NAND-памяти, энергонезависимые переменные (тип retain) могут сохраняться как в NAND-памяти, так и на SD-карте, что позволяет создавать большие проекты и пользоваться значительным числом переменных retain. Наличие драйверов в OC Linux позволяет подключать к ПЛК различные устройства, такие как модемы, Wi-Fi сетевые адаптеры и пр.

Питание прибора производится от сети от переменного (АГАВА ПК-30 и АГАВА ПК-30.1) или постоянного тока (АГАВА ПК-30.2).Встроенный гальванически развязанный датчик питающей сети позволяет прибору определить отсутствие сети, предпринять соответствующие действия, либо корректно завершить работу.

2 Технические характеристики и условия

эксплуатации

	Общие сведени	19	
	АГАВА ПЛК-30	АГАВА ПЛК-30.1	АГАВА ПЛК-30.2
Конструктивное исполнение	Корпус для крепления на І	DIN-рейку 35 мм.	
Габаритные размеры	224x125x60		
Степень защиты корпуса	IP20		
	90-265В переменного или	постоянного тока.	24 + 10%
Напряжение питания	Частота переменного	тока до 63Гц.	постоянного тока
	Номинальное значени	е: ~220В 50Гц.	
Потребляемая мощность	7Вт		
Индикация	Графический LCD-индикат Индикаторы приема-п USB Индикатор обращения	ор с RGB-подсветкой : ередачи интерфей к SD-карте	128x64 (диагональ 62 мм.) йсов RS-485, Ethernet,
	Программируемые ин, «Программа»	дикаторы «Работа»	», «Авария»,
Звуковая сигнализация	Встроенный пьезоэлектри	ческий зуммер	
Органы управления	Клавиатура 20 клавиш		
	Аппаратные ресу	рсы	
	АГАВА ПЛК-30	АГАВА ПЛК-30.1	АГАВА ПЛК-30.2
Микроконтроллер	32-разрядный, Cortex-A8 600МГц	32-разрядный, Quac Processor	I-core ARM CortexTM-A7
Объем и тип оперативной памяти	128 M6, DDR3	1024 M6, DDR3	
Объем и тип флеш-памяти	128 M6, NAND	8 Гб, еММС	
Объем SD-карты	до 2 Тб		
Часы реального времени	Есть		
Сторожевой таймер	Есть		
	Интерфейсы		
	АГАВА ПЛК-30	АГАВА ПЛК-30.1	АГАВА ПЛК-30.2
R5-485	Групповая гальваническая	а развязка, скорость д	0 230.4 K0/C 4 ШТ.
K3-232		звем рр-э (сигналы к	л, тл, ктэ, стэ) т шт.
Ethernet	10/100 Мб/с 1 шт.	Гальваническая раз	вязка, 10/100 Мб/с 1 шт.
USB 2.0	1.5 и 12 Мб/с, Host - 1шт., (ОТG - 1 шт.	
Интерфейс для программирования і отладки	¹ Ethernet		
Характеристики	подключаемых устройств	в хранения данных U	JSB-flash
Версии спецификации USB	2.0 LS, FS, HS		
Типы файловых систем	FAT (12,16,32), NTFS, ext (2	2,3,4)	
Максимальная емкость USB- накопителя, Гб	2 T6		
Характеристики	и подключаемых устройст	в хранения данных	SD-карт
Версии спецификации SD	2.00 часть А2		
Типы SD-карт	SD (до 2 Гб), SDHC (до 32 Г	⁻ б), SDXC (до 2 Тб)	
Класс скорости	SD class 2 и выше		
Типы файловых систем	FAT (12,16,32), NTFS, ext (2	2,3,4)	
Максимальная емкость SD- накопителя, Гб	2 Тб		
	Дискретные вхо	ды	
Датчик сети переменного тока	Uвх ~220 В, гальваническа	ая развязка – 1 шт.	
	Программные ресу АГАВА ПЛК-30	урсы АГАВА ПЛК-30.1	АГАВА ПЛК-30.2
	Реального времени Linux F		Linux DT 5 10 16
операционная система	4.4.12	геальної о времени	LIIIUX NT J.19.10
Система исполнения	CODESYS 3.5.10		

	Условия эксплуатации
Тип помещения	Закрытые взрывобезопасные помещения без агрессивных паров и газов
Температура окружающего воздуха	а От 0 до +70 °С
Влажность воздуха	Верхний предел относительной влажности воздуха 80 % при +35 °C и более низких температурах без конденсации влаги.
Атмосферное давление	От 86 до 107 кПа

З Устройство и принцип работы прибора

Внешний вид прибора

Прибор изготавливается в пластмассовом корпусе, предназначенном для крепления на DIN-рейку 35 мм. Подключение всех внешних связей осуществляется через разъемные соединения, расположенные по двум боковым и передней сторонам контроллера. Открытие корпуса для подключения внешних связей не требуется.

На верхней боковой стороне расположены разъемы SD-карты, USB-host, USB-OTG, и Ethernet. Разъем Ethernet RJ-45 предназначен для использования как экранированных (STP, FTP), так и неэкранированных (UTP) кабелей. На разъеме Ethernet установлены два светодиода – зеленый и желтый. Зеленый светодиод индицирует подключение к сети Ethernet (Link), желтый – прохождение пакетов по сети (Act). На нижней боковой стороне расположены разъем RS-232 и микропереключатели 1 и 2. Распайка разъема RS-232 стандартная для 9-контактного разъема COM-порта (EIA/TIA-574). Микропереключатель 1 определяет источник загрузки ПЛК. Нормальное положение OFF (верхнее) – загрузка с NAND-памяти, ON (нижнее) – загрузка с SD-карты. Микропереключатель 2 служит для применения пользователями и доступен в среде OC Linux.

На передней стороне прибора расположены разъемы:

- X1 (RS485-1 и RS485-2);
- X2 (RS485-3 и RS485-4);
- Х4 (датчик сети);
- X5 (питание);

- X7 (экран Ethernet);
- XS3 (подключение терминального резистора 120 Ом для RS485-1);
- XS4 (подключение терминального резистора 120 Ом для RS485-2);
- XS5 (подключение терминального резистора 120 Ом для RS485-3);
- XS6 (подключение терминального резистора 120 Ом для RS485-4).

На лицевой поверхности прибора находится клавиатура и светодиоды:

- «Работа», «Авария» и «Программа» программно-управляемые светодиоды;
- «Диск» индикация обращения к SD-карте;
- «USB» индикатор обращения к USB-устройствам;

Схема подключения линии RS-485

- «RS485-1», «RS485-2», «RS485-3» и «RS485-4» двуцветные индикаторы обмена по соответствующим линиям RS-485, при передаче горит красный свет, при приеме зеленый;
- «RS232» двуцветный индикатор обмена интерфейса RS232, при передаче горит красный свет, при приеме – зеленый.

Прибор оснащен встроенными часами реального времени, которые питаются от съемной литиевой батареи типа CR1220.

Встроенный блок питания обеспечивает питание всего устройства и защищен самовосстанавливающимся предохранителем.

Схема подключения экранированной линии RS-485

Схема подключения экранированной линии RS-485 с дренажным проводом

3.1 Разъем X1 (RS485-1, RS485-2), назначение контактов

N⁰	конт.	Назначение	№ конт.	Назначение
1		A (Data +) RS485-1	5	A (Data +) RS485-2
2		B (Data -) RS485-1	6	B (Data -) RS485-2
3		Дренаж-1	7	Дренаж-2
4		Экран-1	8	Экран-2
			9	Земля

3.2 Разъем X2 (RS485-3, RS485-4), назначение контактов

N⁰	конт. Наз	вначение	№ конт.	Назначение
1	A (Dat	a +) RS485-3	5	A (Data +) RS485-4
2	B (Dat	a -) RS485-3	6	B (Data -) RS485-4
3	Дрена	ж-3	7	Дренаж-4
4	Экран	-3	8	Экран-4
			9	Земля

Схема подключения датчика сети

3.3 Разъем Х4 (датчик сети), назначение контактов

N⁰	конт. Назначение
1	~220 B
2	~220 B

3.4 Разъем Х5 (питание), назначение контактов

Схема подключения питания АГАВА ПЛК-30.2

Схема подключения питания АГАВА ПЛК-30 и АГАВА ПЛК-30.1

	АГАВА ПЛК	-30.2	
Nº ⊧	онт. Назн	ачение	
1	Заземл	пение	
2	Общий	i	
3	Питані	ие + 24 B	
	ВА ПЛК-30	, ΑΓΑΒΑ	ПЛК-30.1
J	№ конт.	Назна	чение

~220 B
Заземление
~220 B

Схема подключения экранированной линии Ethernet

3.5 Разъем X7 (экран Ethernet), назначение контактов

№ конт.	Назначение
1	Соединение с экраном через резистор 100 Ом
2	Прямое соединение с экраном

3.6 Терминальные джамперы, назначение

Линия Обозначение	е Назначение
RS485-1 XS3	При установленном джампере (замыкании контактов перемычкой) подключаются
RS485-2 XS4	внутренние терминальные
RS485-3 XS5	резисторы 120 Ом для согласования с соответствующим волновым
RS485-4 XS6	сопротивлением кабеля

3.7 Программная часть

Программная часть прибора состоит из трех модулей:

- загрузчик ОС;
- OC Linux;
- среда исполнения CODESYS.

При включении прибора сначала выполняется загрузчик, потом запускается ОС и, затем, среда исполнения CODESYS, которая запускает на выполнение программу ПЛК. Если программа CODESYS не загружена в ПЛК, то прибор будет готов к ее загрузке.

Загрузчик ОС выполняет распаковку образа ОС, его размещение в ОЗУ, запуск на выполнение загрузки ОС. Кроме того, загрузчик обеспечивает обновление образа ОС во внутренней NAND-памяти. Во время работы загрузчика загорается светодиод «Работа», далее при загрузке ОС светодиод гаснет.

OC Linux служит базовой операционной системой, на которой выполняется среда исполнения CODESYS.

Среда исполнения CODESYS – это приложение, работающее под управлением OC Linux, выполняющее машинно-независимый код проекта, созданный средой программирования CODESYS и определяющий логику работы ПЛК.

4 Подготовка прибора к использованию

4.1 Общие указания

В зимнее время тару с ПЛК распаковывать в отапливаемом помещении не ранее чем через 12 ч после внесения ее в помещение. Монтаж, эксплуатация и демонтаж ПЛК должны производиться персоналом, ознакомленным с правилами его эксплуатации и прошедшими инструктаж по работе с электрооборудованием в соответствии с правилами, установленными на предприятии-потребителе.

4.2 Указания мер безопасности

По способу защиты от поражения электрическим током ПЛК соответствует классу 0 по ГОСТ 12.2.007.0-75.

При эксплуатации и техническом обслуживании необходимо соблюдать требования ГОСТ 12.3.019-80, «Правил эксплуатации электроустановок потребителей» и «Правил

охраны труда при эксплуатации электроустановок потребителей».

При эксплуатации прибора открытые контакты клеммника находятся под напряжением. Установку прибора следует производить в специализированных шкафах, доступ внутрь которых разрешен только квалифицированным специалистам.

Любые подключения к ПЛК и работы по его техническому обслуживанию производить только при отключенном питании прибора и подключенных к нему устройств.

4.3 Монтаж и подключение прибора

Последовательность монтажа прибора следующая:

- осуществляется подготовка посадочного места в шкафу электрооборудования, конструкция шкафа должна обеспечивать защиту прибора от попадания в него влаги, грязи и посторонних предметов;
- прибор закрепляется на DIN-рейке, при размещении прибора следует помнить, что при эксплуатации открытые контакты клемм находятся под напряжением, опасным для человеческой жизни.

Питание ПЛК следует осуществлять от сети переменного или постоянного тока напряжением 90-265 В. Для повышения помехозащищенности и безаварийной работы прибора рекомендуется использовать источник бесперебойного питания. Линии питания выполняются многожильным кабелем сечением от 0,35 до 0,75 мм². Рекомендуемые типы кабелей МКШ, МКЭШ, МКШМ ГОСТ 10348-80.

Подключение интерфейса RS-485 выполняется по двухпроводной схеме симметричным кабелем с волновым сопротивлением 120 Ом. Рекомендуемые типы кабелей: КИПвЭВ 1,5х2х0,78; КИПЭВ 2х2х0,6 или аналогичные. Подключение производить при отключенном напряжении питания всех устройств сети RS-485. Необходимо соблюдать полярность подключения. Провод «А» подключается к выводу «А» контроллера, аналогично соединяются выводы «В». В оконечных узлах линии RS-485 устанавливаются терминальные резисторы. В контроллере встроенные терминальные резисторы сопротивлением 120 Ом подключаются соответствующими <u>перемычками XS</u>. Варианты схем подключения линий приведены в Приложениях 1-4. При использовании кабеля «витая пара» типа UTP категории не ниже 4 с волновым сопротивлением 100 Ом, в качестве терминальных резисторов следует использовать внешние согласующие терминальные резисторы номиналом 100 Ом, предварительно сняв соответствующие подключенной линии перемычки XS1-XS6. Длина линии связи для интерфейса RS-485 – до 1000 м.

Устройство должно быть надежно заземлено. На заземляющих зажимах не должно быть ржавчины. При техническом обслуживании необходимо осуществлять проверку заземления.

4.4 Электромагнитные помехи и методы их подавления

На работу прибора могут оказывать влияние внешние помехи, возникающие под воздействием электромагнитных полей (электромагнитные помехи), наводимые на сам прибор и на линии связи прибора с внешним оборудованием, а также помехи, возникающие в питающей сети.

Для уменьшения влияния электромагнитных помех необходимо выполнять приведенные ниже рекомендации:

- обеспечить надежное экранирование сигнальных линий. Экраны следует электрически изолировать от внешнего оборудования на протяжении всей трассы и подсоединять только к предназначенному контакту;
- для линий связи использовать дренажный провод для выравнивания потенциалов приемо-передатчиков;
- прибор рекомендуется устанавливать в металлическом шкафу, внутри которого не должно быть никакого силового оборудования (контакторов, пускателей и т. п.).
 Корпус шкафа должен быть надежно заземлен.

Для уменьшения электромагнитных помех, возникающих в питающей сети, следует выполнять следующие рекомендации:

- подключать прибор к питающей сети отдельно от силового оборудования;
- при монтаже системы, в которой работает прибор, следует учитывать правила организации эффективного заземления;
- все экраны и заземляющие линии прокладывать по схеме «звезда», при этом необходимо обеспечить хороший контакт с экранирующим или заземляемым элементом;
- заземляющие цепи должны быть выполнены проводами с сечением не менее 1 мм²;
- устанавливать фильтры сетевых помех в линиях питания прибора;
- устанавливать искрогасящие фильтры в линиях коммутации силового оборудования.

5 Настройка прибора

На уровне операционной системы прибор имеет файловые ресурсы и системную консоль. В файлах содержится необходимая информация для работы ОС и системы исполнения CODESYS. Консоль служит для интерактивного взаимодействия с ОС (выполнения команд ОС и т. п.).

Файловая система состоит из системной ФС и монтируемой ФС, которая доступна как для чтения, так и для записи, и имеет следующие точки монтажа:

- /run/media/mmcblk* для SD-карты;
- /run/media/sda* для и USB-накопителя;

Системная консоль находится на последовательном порте RS-232. Параметры терминала для консоли следующие:

- скорость (бит/с): 115200
- биты данных: 8
- четность: Нет

- стоповые биты: 1
- управление потоком: Нет

Соединение контроллера с ПК по интерфейсу RS-232 производится нуль-модемным кабелем.

При загруженной OC, подключенной и настроенной сети доступ к системной консоли можно получить по SSH.

Права администратора для входа по SSH:

- логин: root
- пароль отсутствует

Для установки времени и даты следует воспользоваться командой:

Г		-	—	—	_	-			_	—	—	—	—	—	_	—	_	_	_	_	_	—	_	—	_	—	—	—	_	 	 1						
L	date	9	MM	DDł	hhr	nm`	YY	YΥ																													I
L		_	_	_	_				_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	 	 l						

где

- MM месяц (1-12);
- DD число (1-31);
- hh часы (0-23);
- mm минуты (0-59);
- YYYY год.

Для сохранения установленного времени и даты в часы реального времени воспользуйтесь командой:

Г	_	-	—	-	—	-	-	—	-	—	—	-	-	—	-	-	-	—	-	—	—	-	_	_	 	 —	—	—	-	_	—	—	_	—	—	—	_	 	 ٦
L	hw	clc	ock	-v	V																																		Т
L	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	 	 _	_	_	_	_	_	_	_	_	_	_	_	 	

При подключении контроллера к сети Ethernet и наличии выхода в Интернет происходит синхронизация времени прибора с серверами точного времени.

Часовой пояс устанавливается в файле /etc/profile путем задания переменной окружения TZ. Например, export TZ="STD-5" (для Екатеринбурга).

Доступ к файлам и ресурсам контроллера при загруженной ОС (в т. ч. запущенной системы исполнения CODESYS) можно получить следующими способами:

- через системную консоль на порте RS-232;
- через системную консоль SSH-сервиса;
- через sftp-сервер.

Для использования сетевых ресурсов необходимо настроить подключение к сети Ethernet. По умолчанию прибор настроен на получение сетевых настроек по DHCP. Просмотреть IP-адрес и другую сетевую конфигурацию можно из консоли, набрав команду:

Г				 	 	 	 	— •	 ·	 	- •	 	 	 -	 · —	 	· -	 	٦
I	if	conf	ig																T
Т																			Т

Задать статический IP-адрес можно в файле /etc/systemd/network/10-eth.network, например:

Для доступа к файлам контроллера через sftp-сервер следует пользоваться Unixсовместимым sftp-клиентом. Под OC Windows это может быть, например, WinSCP, Total Commander и т. п.

6 Работа прибора с CODESYS V3.5

Детальное описание работы в среде программирования (СП) CODESYS приводится в документации, поставляемой вместе с СП. Описание библиотек для CODESYS для работы с ПЛК «Агава ПЛК-30» приводится в Руководстве программиста CODESYS (АГСФ.421445.003). Ниже описывается основной порядок работы ПЛК с CODESYS.

Для начала работы с ПЛК «Агава ПЛК-30» необходимо в репозиторий устройств СП CODESYS добавить описание контроллера. Для этого нужно в меню *Tools* | *Device Repository* выбрать *Install* и далее выбрать файл Agava6432.30.devdesc.xml. Данный файл входит в комплект поставки прибора, также последняя версия файла доступна на сайте производителя www.kb-agava.ru.

Для создания нового проекта необходимо в СП CODESYS вызвать команду меню *File* | *New Project*, задать путь и имя проекта и выбрать подходящий шаблон Standard project.

В списке устройств выбрать Agava6432.30.

Подключить ПЛК к общей сети Ethernet с компьютером, на котором установлена СП CODESYS. Включить ПЛК, дождаться его загрузки.

В окне Devices дважды щелкнуть на Device(Agava6432.30). Откроется вкладка Device, в которой выбрать Scan Network для сканирования сети с подключенными ПЛК. После сканирования откроется список обнаруженных ПЛК.

Из списка выбрать ПЛК, к которому нужно подключиться, и нажать ОК. Далее выбрать Online | Login для подключения к ПЛК и загрузки проекта.

7 Обновление базовых программных компонентов ПЛК

Прибор поставляется с установленными базовыми программными компонентами. В процессе эксплуатации прибора может возникнуть необходимость их обновления. Файлы программных компонентов могут быть получены через сайт Изготовителя - www.kb-agav.ru, либо предоставлены по запросу.

Базовое программное обеспечение для ПЛК состоит из следующих модулей:

- загрузчик;
- OC Linux;
- корневая файловая система;
- система исполнения CODESYS.

Загрузчик служит для загрузки OC, а также для обновления программных компонентов контроллера и по умолчанию хранится во NAND-памяти ПЛК. Файлы компонентов загрузчика: u-boot.img (образ U-Boot) и MLO (первичный загрузчик). Данные файлы взаимосвязаны и должны применяться только совместно, одной и той же версии. При включении контроллера сначала происходит загрузка первичного загрузчика MLO во внутреннюю память процессора, который выполняет инициализацию необходимого оборудования и загружает основной загрузчик U-Boot, который впоследствии загружает компоненты OC Linux и передает им управление. Контроллер позволяет выбирать источник загрузки при помощи микропереключателя 1, расположенного на боковой стенке лицевой панели: либо из NAND-памяти - это основной режим загрузки (положение микропереключателя «OFF» - вверх), либо с SD-карты – это дополнительный режим загрузки для обновления или аварийного восстановления контроллера.

Программные компоненты OC Linux хранятся в NAND-памяти контроллера и состоят из образа ядра Linux – файл zImage и файла описания устройств am335x-agava_30.dtb. Данные файлы взаимосвязаны и должны применяться только совместно, одной и той же версии.

Корневая файловая система содержит набор каталогов и утилит для нормальной работы ОС, хранится в NAND-памяти и монтируется при загрузке ядра ОС Linux. Имя файла образа для прошивки корневой файловой системы – agava.ubi.

Система исполнения CODESYS состоит из файлов codesyscontrol, codesyscontrol.a и

CODESYSControl.cfg, размещена в корневой файловой системе в каталоге /usr/bin/codesys и запускается как сервис при загрузке OC Linux. Данные файлы взаимосвязаны и должны применяться только совместно, одной и той же версии.

7.1 Обновление компонентов загрузчика

- подготовить SD-карту с файловой системой FAT (12,16,32), разместить в ее корневой каталог файлы для обновления MLO и u-boot.img. Установить SD-карту в прибор;
- подключить ПЛК нуль-модемным кабелем к интерфейсу RS-232 компьютера, на компьютере настроить терминал, в соответствии с параметрами, указанными в п. 5.3, выбрать соответствующий порт;
- чтобы зайти в загрузчик, необходимо включить ПЛК и сразу нажимать любую клавишу в терминале компьютера до появления в нем строки AGAVA6432.30#;
- в терминале последовательно выполнить команды:

```
    Image: run upd_mlo
    Image: run upd_u-boot
```

- убедиться, что команды выполнились без ошибок;
- выключить ПЛК, затем включить и повторно зайти в загрузчик, как было указано выше, убедиться, что произошла загрузка обновленной версии загрузчика;
- обновить переменные окружения нового загрузчика, выполнив команды в терминале:

 убедиться, что произошла полная загрузка контроллера - до появления приглашения OC Linux в командной строке agava6432_30 login:.

7.2 Обновление компонентов ОС Linux

Порядок действия по обновлению компонентов OC Linux:

- подготовить SD-карту с файловой системой FAT (12,16,32), в корневом каталоге SDкарты создать папку boot, разместить в папке файлы для обновления - zImage и am335x-agava_30.dtb. Установить SD-карту в прибор.
- подключить ПЛК нуль-модемным кабелем к интерфейсу RS-232 компьютера, на компьютере настроить терминал, в соответствии с параметрами, указанными в п. 5.3, выбрать соответствующий порт;
- чтобы зайти в загрузчик, необходимо включить ПЛК и сразу нажимать любую клавишу в терминале компьютера до появления в нем строки AGAVA6432.30#;
- в терминале последовательно выполнить команды:

```
|
| run upd_fdt
| run upd_linux
| reset
```

 убедиться, что команды выполнилась без ошибок и контроллер перезагрузился с обновленной версией Linux.

7.3 Обновление корневой файловой системы

Внимание! При обновлении корневой файловой системы все пользовательские настройки, проекты и иные файлы пользователя не сохраняются. Перед обновлением их необходимо сохранить самостоятельно!

- подготовить SD-карту с файловой системой FAT (12,16,32), разместить в корневой каталог файл образа корневой файловой системы agava.ubi (если файл был поставлен с другим именем, но с расширением *.ubi, необходимо его переименовать в agava.ubi), установить SD-карту в прибор;
- подключить ПЛК нуль-модемным кабелем к интерфейсу RS-232 компьютера, на компьютере настроить терминал, в соответствии с параметрами, указанными в п. 5.3, выбрать соответствующий порт;
- чтобы зайти в загрузчик, необходимо включить ПЛК и сразу нажимать любую клавишу в терминале компьютера до появления в нем строки AGAVA6432.30#;
- в терминале последовательно выполнить команды:

Г		
L	run upd_rootfs	
L	reset	
L		

 убедиться, что прошивка выполнилась без ошибок и контроллер перезагрузился с обновленной корневой файловой системой.

Обновление системы исполнения CODESYS может быть выполнено либо копированием компонентов CODESYS, либо при помощи менеджера пакетов opkg.

Обновление CODESYS копированием:

- загрузить ПЛК;
- подключиться к контроллеру через sftp-клиент или SSH;
- сделать резервную копию каталога /usr/bin/codesys;
- поместить новые файлы системы исполнения CODESYS в каталог /usr/bin/codesys (перезаписав старые);
- перезагрузить ПЛК.

Обновление CODESYS с использованием менеджера пакетов:

поместить пакет с обновлением agava-codesys.ipk в контроллер (через SSH, sftp и т.п.);

• подать команду установки обновления:

_____орkg upgrade <путь до пакета>agava-codesys.ipk

8 Техническое обслуживание

При выполнение работ по техническому обслуживанию контроллера необходимо соблюдать меры безопасности, изложенные в разделе 4.

Технический осмотр контроллера проводится обслуживающим персоналом не реже одного раза в 6 месяцев и включает в себя выполнение следующих операций:

- очистку корпуса и клеммных колодок прибора от пыли, грязи и посторонних предметов;
- проверку качества крепления контроллера на DIN-рейке;
- проверку качества подключения внешних связей.

Обнаруженные при осмотре недостатки следует немедленно устранить.

Замена литиевой батареи часов реального времени:

- подготовить новую литиевую батарею CR1220;
- выключить и демонтировать контроллер;
- поместить контроллер на столе лицевой крышкой вверх;
- извлечь SD-карту;
- открутить четыре винта крепления лицевой крышки контроллера;
- аккуратно сдвинуть левую сторону крышки вниз, не допуская отсоединения шлейфа крышки от разъема;
- держатель батареи X4 расположен у левого верхнего угла LCD-индикатора;
- часовой отверткой извлечь старую батарею и установить новую;
- собрать прибор в обратной последовательности, установить SD-карту;
- установить прибор на место.

9 Правила транспортирования и хранения

Контроллер должен транспортироваться в упаковке при температуре от -30 °C до +80 °C и относительной влажности воздуха не более 95 % (при 35 °C).

Транспортирование допускается всеми видами закрытого транспорта.

Транспортирование на самолетах должно производиться в отапливаемых герметичных отсеках.

Условия хранения прибора в транспортной таре на складе потребителя должны соответствовать условиям 1 по ГОСТ 15150-69.

Воздух в помещении хранения не должен содержать агрессивных паров и газов.

10 Комплектность

Контроллер «АГАВА ПЛК-30»	1	шт.
Руководство по эксплуатации	1	шт.
Руководство программиста ПЛК	1	шт.
Нуль-модемный кабель 9F/9F	1	шт.
Паспорт	1	шт.

11 Гарантийные обязательства

Гарантийный срок эксплуатации - 12 месяцев со дня продажи.

В случае выхода контроллера из строя в течение гарантийного срока при условии соблюдения потребителем правил транспортирования, хранения, монтажа и эксплуатации предприятие-изготовитель обязуется осуществить его бесплатный ремонт.

Для отправки в ремонт необходимо вложить в коробку с контроллером паспорт, акт отказа и отправить по адресу:

620144 г. Екатеринбург, ул. Верещагина, 6А, ООО "Конструкторское Бюро АГАВА".

Источник — <u>https://docs.kb-agava.ru/index.php?title=Руководство_по_эксплуатации_AFABA_ПЛК-30&oldid=2796</u>

Эта страница в последний раз была отредактирована 3 марта 2025 в 08:19.